
































dimethylcyclohexene in (the very non-polar solvent) pentane. It was found that addition occurred rapidly to give almost exclusively the trans product; letting it sit around for awhile led to some equilibration between stereoisomers. The authors propose that the reaction proceeds through a termolecular transition state (i.e. involving three molecules) with the alkene sandwiched between two molecules of HBr. Note 3. For our purposes, drawing the immediate formation of a carbocation is fine. Some studies look for the possibility of an even earlier intermediate called a "pi complex", where H<sup>+</sup> is coordinated to the pi-bond. As the bond between the pi-bond to the proton becomes stronger, the pi-complex then evolves into the carbocation intermediate. Note 4. Alkenes present a little bit of a dilemma in using curved arrows to describe the movement of electron pairs, since the double bond is not polarized and there is no obvious nucleophilic or electrophilic end. The convention in drawing arrows is that the carbon involved in bond formation is the one closest to the electrophile. For example here is an example of arrow-pushing that shows the right-hand carbon of the double bond forming a new bond to H: And here is an example of curved arrows showing formation of a new bond to the left side of the alkene: To solve this dilemma, various new conventions have been devised such as the bouncy arrow formalism and drawing a dashed line to indicate the bond being formed, although these have not exactly taken the world by storm. Note 5. If you are looking for a good time, this review outlines the whole rich and fascinating history of "cationic" alkene cyclizations, with a particular focus on how steroids and other related compounds are synthesized in nature. Quiz Yourself! Become a MOC member to see the clickable quiz with answers on the back. Become a MOC member to see the clickable quiz with answers on the back. Become a MOC member to see the clickable quiz with answers on the back. (Advanced) References and Further Reading Ingold's "Structure and Mechanism in Organic Chemistry" is a valuable guide to the early literature on this topic. The Logic Behind Markovnikov's Rule: Was It an Inspired Guess? ...No! D. E. Lewis, *Angew. Chem. Int. Ed.* 2021, 60, 4412. DOI: 10.1002/anie.202008228 Fun, accessible historical essay examining Markovnikov's studies in the 1860's-1870's. I. Ueber die Abhangigkeit der verschiedenen Vertrittbarkeiten der Radicalwasserstoffs in den isomeren Buttersuren. Markovnikoff, W. *Justus Liebigs Ann. Chem.*, 153: 228-259. DOI: 10.1002/jlac.18701530204 The original Markovnikov paper. ELECTRON DISPLACEMENT IN CARBON COMPOUNDS I. ELECTRON DISPLACEMENT VERSUS ALTERNATE POLARITY IN ALIPHATIC COMPOUNDS Howard J. Lucas and Archibald Y. Jameson *Journal of the American Chemical Society* 1924 46 (11), 2475-2482 DOI: 10.1021/ja01676a018 If not the earliest explanation of Markovnikov's rule, certainly one of them. Secondary Isoamyl Chloride, 3-Chloro-2-methylbutane Frank C. Whitmore and Franklin Johnston *Journal of the American Chemical Society* 1933 55 (12), 5020-5022 DOI: 10.1021/ja01339a053 One of the first clearly written out explanations of a carbocation rearrangement in addition of HX to alkenes. A subsequent paper (*JACS* 1950 76 (16), 4121-4123 DOI: 10.1021/ja01645a020) OK. When I wrote, above, that the addition of HX to alkenes is not stereoselective, I fibbed. The truth is that it can be stereoselective for anti addition if carried out at low temperatures in non polar solvents such as pentane. The proposed mechanism is not a free carbocation but a termolecular transition state involving two equivalents of H-Br. (Interestingly, though, the reaction of H<sub>3</sub>O<sup>+</sup> with the same compound is not stereoselective). In the strongly polar solvent acetic acid, the reaction results predominantly (but not exclusively!) through the classic carbocation mechanism. Hydrochlorination of cyclohexene in acetic acid. Kinetic and product studies Robert C. Fahey, Michael W. Monahan, and C. Allen McPherson *Journal of the American Chemical Society* 1970 92 (9), 2810-2815 DOI: 10.1021/ja00712a034 Detailed kinetic studies of the addition of HCl to cyclohexene in acetic acid, discussing a possible third-order mechanism( $rate = k[cyclohexene][HX]^2$ ). SPIROANNELATION OF ENOL SILANES: 2-OXO-5-METHOXYSPIRO[5.4]DECANE Lee, T. V.; Porter, J. R. *Org. Synth.* 1995, 72, 189 DOI: 10.15227/orgsyn.072.0189 The first reaction in the above procedure involves two steps - addition of HBr across the double bond and converting the aldehyde to a dimethyl acetal. Markovnikov's Rule Robert C. Kerber *Journal of Chemical Education* 2007 84 (7), 1109 DOI: 10.1021/ed084p1109.1 A 2007 missive urging educators and textbook writers to retire the teaching of Markovnikov's Rule. A Case Study in Biomimetic Total Synthesis: Polyolefin Carbocyclizations to Terpenes and Steroids Ryan A. Yoder and Jeffrey N. Johnston *Chemical Reviews* 2005 105 (12), 4730-4756 DOI: 10.1021/cr040623l Double bonds are electron-rich and therefore they react with many electron-deficient species including acids such as HCl, HBr, and HI. The products of these addition reactions of HX acids to alkenes are alkyl halides. These are hydrohalogenation reactions which are a type of electrophilic addition reactions to alkenes. The electrophile here is the acid or other molecules that react with the alkene. The alkene can be classified as a Lewis base as it is the electron donor, and it also falls in the category of Brnsted bases because, in these particular reactions, it is also the proton acceptor. We will see, when discussing the mechanism of these reactions, that it is the pi bond that acts as a base, and although it is not a strong base, it is still reactive to strong acids. The Regiochemistry of Hydrohalogenation of Alkenes The most important feature of these reactions, applicable in synthesis, is their regiochemistry. Notice how in the third and fourth reactions, the I and Br appeared on the more substituted carbon atoms (secondary in the case of I, and tertiary in the case of Br). This selectivity can be explained by showing the mechanism of the hydrogen halide additions to alkenes. The rate-determining step of the electrophilic addition of HX acids to alkenes is the first step where the electrons of the pi bond attack the hydrogen of the acid, forming a carbocation intermediate. This step defines the product of the reaction as every double bond can be "opened up" in two ways, depending on which carbon makes the new C-H bond. For example, in the third reaction, but-1-ene can break the double bond either to the left or to the right, leading to a secondary or a tertiary carbocation. To predict which carbocation is favored, we need to compare their stability. What do you remember about the stability of carbocations? Because of electron-donating and hyperconjugation, the stability of carbocations increases with the number of alkyl groups connected to the positively charged carbon. Therefore, the secondary carbocation is the preferred intermediate in this reaction, and, upon formation, it is quickly attacked by the halide anion giving the corresponding alkyl halide as the final product. Notice that the product is formed as a mixture of two enantiomers in equal quantities (racemic mixture). This is the stereochemistry of the hydrohalogenation which will discuss later in this post. Let's also go back a little bit to address the first two reactions: The alkene in the first reaction is symmetrical, and regardless of what carbon the Br adds to, we are going the same product. It is a racemic mixture of two enantiomers, as 2-bromobutane is a chiral compound, but there is no regiochemistry in addition reactions to symmetrical alkenes. In the second reaction, we have pent-2-ene, and it is not symmetrical. On one end of the double bond, there is a methyl and on the other end, there is an ethyl group. And even though methyl is a smaller group than ethyl, and one may expect to see some preference of Br adding to the less sterically hindered carbon, little or no regioselectivity is observed in hydrogen halide additions to alkenes with different sizes of alkyl groups. To summarize the regiochemistry of HX addition reactions to alkenes, remember that the halogen adds to the more substituted carbon of the double bond. We can also say that the hydrogen adds to the less substituted carbon of the double bond or which the same to the carbon that already has more hydrogens. This is known as the Markovnikov's rule, and we are going to see it quite often in the reactions of alkenes. Rearrangements in Hydrohalogenation of Alkenes The formation of carbocation intermediates brings the possibility of rearrangements during hydrohalogenation of alkenes, just like we have seen in SN1 and E1 reactions. For example, when the following alkene is treated with HBr, based on the Markovnikov's rule, we may expect the Br to add to the middle carbon because of the greater stability of the secondary carbocation. This is true, upon protonation, the secondary carbocation is formed; however, before reacting with the bromide ion, it undergoes a 1,2-hydride shift rearrangement to form a more stable tertiary carbocation. Once the tertiary carbocation is formed, it is attacked by the bromide resulting in a tertiary alkyl halide as the major product of the reaction. Let's combine the steps in one scheme to represent the mechanism of hydride shift rearrangement in the hydrohalogenation of alkenes: Rearrangements during hydrohalogenation of alkenes, and other reactions going via carbocation intermediates, can also happen via 1,2-methyl (more accurately methide) shifts. For example, instead of the hydrogen, there was a methyl group on the alkene we discussed above, a 1,2-methyl shift would occur to transform the secondary carbocation to a more stable tertiary carbocation. To summarize this section, remember that, when possible, rearrangements are going to happen. Therefore, you need to keep them in mind when looking at any reaction involving a carbocation intermediate. In a typical undergraduate organic chemistry course, these are going to be SN1, E1, and the electrophilic addition reactions to alkenes such as those of hydrohalic acids (hydrogen halides), and acid-catalyzed hydration. The Stereochemistry of Hydrohalogenation of Alkenes There is no stereoselectivity in the addition of acids to alkenes. Let's see what products are formed when the alkene has no chirality centers. Hydrohalogenation of Alkenes with No Chirality Centers For example, in the following addition reaction of HCl to the unsymmetrical alkene, we obtain a mixture of enantiomers which means the reaction is not selective to any of these stereoisomers. To summarize, addition reactions of alkenes with no stereogenic center that form a product with one stereogenic center produce a racemic mixture of enantiomers. This is explained by the fact that carbocations are sp<sup>2</sup>-hybridized, flat centers (we are talking about the positively charged carbon) and the nucleophilic attack occurs from both sides. This attack happens in the same amounts and as a result, a racemic mixture of two enantiomers is obtained. Hydrohalogenation of Alkenes with a Chirality Center If the starting alkene contains a chirality center, and the addition to the double bond creates a new chirality center, then the products are diastereomers. The asymmetric center in the starting material is not changed since it does not participate in the reaction. The new asymmetric center, however, is opposite for each product depending on the face the bromide had attacked the carbocation. Therefore, the products are a mixture of diastereomers. Similar to this, SN1 reactions can also produce diastereomers even though we usually say that they give a racemic mixture. You can check problems 3.5 and 3.6. Addition Reactions that Form a Product with Two Chirality Centers Let's consider the reaction of 1,2-dimethylcyclohexene with HBr. The starting material does not have any asymmetric centers. However, it produces four stereoisomers in this reaction! Let's see how this happens and what is the relationship between these stereoisomers. The first step is, as usual, the protonation of the double bond and what is important here is to remember/visualize that the H can add from both faces of the double bond: Notice that because of the hydrogen adding from different faces, the new chirality center can be either R or S, and statistically it forms in a 50:50 ratio. There is no preference as to hydrogen adding from one side or the other side - no stereoselectivity. Similar to this, once the carbocation is formed, the bromide ion attacks the positively charged, trigonal planar carbon from above or below. This variety of additions results in four stereoisomers as final products. These are pairs of enantiomers and each enantiomer has two diastereomers. There is no control over the stereochemistry of this reaction and the proton, as well as the bromide (or any other substituent), add from both sides in equal amounts. Therefore, the reaction is not stereoselective i.e. none of the stereoisomers is formed preferentially. It is also not stereospecific, as the same products are obtained regardless if the cis or trans stereoisomers of the alkene are used. Therefore, when two stereogenic centers are formed in an addition reaction of alkenes, all the possible stereoisomers are formed, and the product is a mixture of enantiomers and diastereomers. Syn and Anti Additions to Alkenes Labeling the addition as "Above" and "Below" is not scientific and not accurate either as the direction depends on the viewer. Therefore, a more universal approach is used to describe the stereochemistry of additions to the double bond. When two groups add to the same side of the double bond, it is called a syn addition and when they add from different sides, it is an anti addition. The hydrohalogenation of alkenes occurs both via syn and anti addition. A representative example of a syn addition to alkenes would be the hydroboration-oxidation reaction where the H and OH groups are adding to the same side of the double bond. The reaction, however, is going with a different mechanism; there are no ionic intermediates and it is a concerted mechanism. A good example of an anti addition is the dihydroxylation reaction by peroxy acids. Notice how the H and OH groups appear on opposite sides in the product. Check Also Share — copy and redistribute the material in any medium or format for any purpose, even commercially. Adapt — remix, transform, and build upon the material for any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow the license terms. Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits. You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation. No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material. Reaction Overview: The hydrohalogenation of alkenes involves breaking a carbon to carbon double bond, followed by the electrophilic addition of a hydrogen atom and halogen. The halide will add to the more substituted carbon following Markovnikov's rule. The product is a haloalkane also called an alkyl halide. Summary of Hydrohalogenation Mechanism Nucleophilic pi bond reaches for electrophilic H in H-X, pi bond breaks in the process H adds to the less substituted carbon atom following Markovnikov's rule. More substituted carbon is now deficient getting a formal charge of +1. Negative halide in solution attacks the carbocation forming a bond. Product is a haloalkane - also known as alkyl halide. Mechanism Overview and Explanation (watch my Hydrohalogenation video to see the detailed step-by-step mechanism in action) Key Reaction Notes: This reaction has a carbocation intermediate and therefore follows Markovnikov's rule. Look out for carbocation rearrangements. This reaction must be carried out in an 'inert' solvent. This reaction is regioselective - halide adds to more substituted carbon. Mechanism for hydrohalogenation with a hydride-shift (carbocation rearrangement) What's Really Going On In This Reaction? Hydrohalogenation, an electrophilic halide addition reaction, is highly useful as a precursor reaction in multi-step organic chemistry synthesis. Understanding the Molecules: H-X molecules such as H-I, H-Br and H-Cl are highly polar molecules. The halogen is highly electronegative and will 'hog' the electrons between itself and hydrogen. This concentration of electrons on the halogen makes it partially negative, while pulling the electrons away from hydrogen makes H partially positive. (You will seldom see this reaction for H-F due to fluorine's high electronegativity and poor reactivity) Unlike sigma (single) bonding electrons, the pi bond sits very high and very low on the carbon skeleton. This allows it to be easily 'distracted' by other nearby molecules. These electrons are highly nucleophilic (attracted to positive) and will reach out for a passing electrophile (positive or partially positive). Breaking The Pi Bond: When an H-X bond such as H-Cl or H-Br gets close to the alkene, the pi bonds will reach out to grab the partially positive hydrogen atom. In order to form this bond, one of the pi electrons must let go of the carbon atom that it's bound to. In deciding which carbon atom we must follow Markovnikov's rule and ask ourselves which pi bond is more capable of holding a positive charge. The more substituted the carbon atom, the more stable the resulting carbocation. The other carbon atom hasn't let go of its pi electrons and is now singly bound to the hydrogen atom. This is how the less substituted carbon atom winds up bound to hydrogen. The hydrogen atom is capable of forming just a single bond. As it forms a bond with carbon it must let go of the halogen. This allows the halogen to grab the electrons that used to bind it to hydrogen, and float away in solution with a complete octet and negative charge. Attack of the Halide: Negative halogens are nucleophiles. Nucleophiles are attracted to electrophiles (positive charges). The lone halogen will use one of its lone electron pairs to attack the carbocation forming a sigma bond. Since the carbocation was on the more substituted carbon, the halogen winds up attached at the more substituted carbon as well. Purpose Of Inert Solvent: The choice of solvent will make a big difference in the overall reaction. Think of your inert solvents as 'I don't care' solvents. They serve the single purpose of dissolving the reactants and reagents, but they don't interfere in the actual process. Inert solvents for this reaction include CH<sub>2</sub>Cl<sub>2</sub>, CCl<sub>4</sub> and more. Notice that they are NOT polar protic. The use of a non-inert solvent or polar protic solvent like water will result in a very different reaction. At the point where the halide breaks away from hydrogen, the solvent 'butts in'. The polar protic solvent will use its partially positive hydrogen atoms to surround or 'cage' the negative halogen. This prevents the halogen from attacking the carbocation. Instead, one of the polar protic solvent molecules will use a lone pair of electrons to attack the carbocation. For example, if carried out in water, the final product will be an alcohol. If carried out in alcohol the product will be an ether. See the hydrohalogenation reaction one to life along with a few practice examples in my alkene halogenation video.